目录

Kubernetes - ELK 日志管理

# ELK 组成

# Elasticsearch

ES 作为一个搜索型文档数据库,拥有优秀的搜索能力,以及提供了丰富的 REST API 让我们可以轻松的调用接口。

# Filebeat

Filebeat 是一款轻量的数据收集工具。

# Logstash

通过 Logstash 同样可以进行日志收集,但是若每一个节点都需要收集时,部署 Logstash 有点过重,因此这里主要用到 Logstash 的数据清洗能力,收集交给 Filebeat 去实现。

# Kibana

Kibana 是一款基于 ES 的可视化操作界面工具,利用 Kibana 可以实现非常方便的 ES 可视化操作。

# 流程图

k8s 内置 Docker,而 Docker 专门有个所有容器的统一日志收集目录 /var/log/containers,所以可以用 Filebeat 去这个目录收集容器的日志,收集后发给 Logstash(如果日志数据太大,可以先发给 Kafka 等中间件,然后 Logstash 去 Kafka 获取日志)。

Logstash 得到日志后,内部可以进行数据的清洗等操作,然后发给 ElasticSearch,接着 Kibana 通过 ElasticSearch 的 API 去 ElasticSearch 里检索日志,在页面展示给程序员、运维人员看。

Kibana 是一个 ElasticSearch 的可视化界面

如下图:

image-20230624151651646

# 集成 ELK

image-20230624151623028

# 部署 es 搜索服务

需要提前给 es 落盘节点打上标签

# 对应下面 es.yaml 的 127
kubectl label node <node name> es=data 
1
2

创建 es.yaml

--- 
apiVersion: v1 
kind: Service 
metadata: 
  name: elasticsearch-logging 
  namespace: kube-logging 
  labels: 
    k8s-app: elasticsearch-logging 
    kubernetes.io/cluster-service: "true" 
    addonmanager.kubernetes.io/mode: Reconcile 
    kubernetes.io/name: "Elasticsearch" 
spec: 
  ports: 
  - port: 9200 
    protocol: TCP 
    targetPort: db 
  selector: 
    k8s-app: elasticsearch-logging 
--- 
# RBAC authn and authz 
apiVersion: v1 
kind: ServiceAccount 
metadata: 
  name: elasticsearch-logging 
  namespace: kube-logging 
  labels: 
    k8s-app: elasticsearch-logging 
    kubernetes.io/cluster-service: "true" 
    addonmanager.kubernetes.io/mode: Reconcile 
--- 
kind: ClusterRole 
apiVersion: rbac.authorization.k8s.io/v1 
metadata: 
  name: elasticsearch-logging 
  labels: 
    k8s-app: elasticsearch-logging 
    kubernetes.io/cluster-service: "true" 
    addonmanager.kubernetes.io/mode: Reconcile 
rules: 
- apiGroups: 
  - "" 
  resources: 
  - "services" 
  - "namespaces" 
  - "endpoints" 
  verbs: 
  - "get" 
--- 
kind: ClusterRoleBinding 
apiVersion: rbac.authorization.k8s.io/v1 
metadata: 
  namespace: kube-logging 
  name: elasticsearch-logging 
  labels: 
    k8s-app: elasticsearch-logging 
    kubernetes.io/cluster-service: "true" 
    addonmanager.kubernetes.io/mode: Reconcile 
subjects: 
- kind: ServiceAccount 
  name: elasticsearch-logging 
  namespace: kube-logging 
  apiGroup: "" 
roleRef: 
  kind: ClusterRole 
  name: elasticsearch-logging 
  apiGroup: "" 
--- 
# Elasticsearch deployment itself 
apiVersion: apps/v1 
kind: StatefulSet # 使用 statefulset 创建 Pod 
metadata: 
  name: elasticsearch-logging # pod 名称,使用 statefulSet 创建的 Pod 是有序号有顺序的 
  namespace: kube-logging  # 命名空间 
  labels: 
    k8s-app: elasticsearch-logging 
    kubernetes.io/cluster-service: "true" 
    addonmanager.kubernetes.io/mode: Reconcile 
    srv: srv-elasticsearch 
spec: 
  serviceName: elasticsearch-logging # 与 svc 相关联,这可以确保使用以下 DNS 地址访问 Statefulset 中的每个 pod (es-cluster-[0,1,2].elasticsearch.elk.svc.cluster.local)
  replicas: 1 # 副本数量,单节点 
  selector: 
    matchLabels: 
      k8s-app: elasticsearch-logging # 和 pod template 配置的 labels 相匹配 
  template:
    metadata: 
      labels: 
        k8s-app: elasticsearch-logging 
        kubernetes.io/cluster-service: "true" 
    spec: 
      serviceAccountName: elasticsearch-logging 
      containers: 
      - image: docker.io/library/elasticsearch:7.9.3 
        name: elasticsearch-logging 
        resources: 
          # need more cpu upon initialization, therefore burstable class 
          limits: 
            cpu: 1000m 
            memory: 2Gi 
          requests: 
            cpu: 100m 
            memory: 500Mi 
        ports: 
        - containerPort: 9200 
          name: db 
          protocol: TCP 
        - containerPort: 9300 
          name: transport 
          protocol: TCP 
        volumeMounts: 
        - name: elasticsearch-logging 
          mountPath: /usr/share/elasticsearch/data/  # 挂载点 
        env: 
        - name: "NAMESPACE" 
          valueFrom: 
            fieldRef: 
              fieldPath: metadata.namespace 
        - name: "discovery.type"  # 定义单节点类型 
          value: "single-node" 
        - name: ES_JAVA_OPTS # 设置 Java 的内存参数,可以适当进行加大调整 
          value: "-Xms512m -Xmx2g"  
      volumes: 
      - name: elasticsearch-logging 
        hostPath: 
          path: /data/es/ 
      nodeSelector: # 如果需要匹配落盘节点可以添加 nodeSelect 
        es: data 
      tolerations: 
      - effect: NoSchedule 
        operator: Exists 
      # Elasticsearch requires vm.max_map_count to be at least 262144. 
      # If your OS already sets up this number to a higher value, feel free 
      # to remove this init container. 
      initContainers: # 容器初始化前的操作 
      - name: elasticsearch-logging-init 
        image: alpine:3.6 
        command: ["/sbin/sysctl", "-w", "vm.max_map_count=262144"] # 添加 mmap 计数限制,太低可能造成内存不足的错误 
        securityContext:  # 仅应用到指定的容器上,并且不会影响 Volume 
          privileged: true # 运行特权容器 
      - name: increase-fd-ulimit 
        image: busybox 
        imagePullPolicy: IfNotPresent 
        command: ["sh", "-c", "ulimit -n 65536"] # 修改文件描述符最大数量 
        securityContext: 
          privileged: true 
      - name: elasticsearch-volume-init # es 数据落盘初始化,加上 777 权限 
        image: alpine:3.6 
        command: 
          - chmod 
          - -R 
          - "777" 
          - /usr/share/elasticsearch/data/ 
        volumeMounts: 
        - name: elasticsearch-logging 
          mountPath: /usr/share/elasticsearch/data/
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

创建命名空间

kubectl create ns kube-logging
1

创建服务

kubectl create -f es.yaml
1

查看 pod 启用情况

kubectl get pod -n kube-logging
1

# 部署 logstash 数据清洗

创建 logstash.yaml 并部署服务

--- 
apiVersion: v1 
kind: Service 
metadata: 
  name: logstash 
  namespace: kube-logging 
spec: 
  ports: 
  - port: 5044 
    targetPort: beats 
  selector: 
    type: logstash 
  clusterIP: None 
--- 
apiVersion: apps/v1 
kind: Deployment 
metadata: 
  name: logstash 
  namespace: kube-logging 
spec: 
  selector: 
    matchLabels: 
      type: logstash 
  template: 
    metadata: 
      labels: 
        type: logstash 
        srv: srv-logstash 
    spec: 
      containers: 
      - image: docker.io/kubeimages/logstash:7.9.3 # 该镜像支持 arm64 和 amd64 两种架构 
        name: logstash 
        ports: 
        - containerPort: 5044 
          name: beats 
        command: 
        - logstash 
        - '-f' 
        - '/etc/logstash_c/logstash.conf' 
        env: 
        - name: "XPACK_MONITORING_ELASTICSEARCH_HOSTS" 
          value: "http://elasticsearch-logging:9200" 
        volumeMounts: 
        - name: config-volume 
          mountPath: /etc/logstash_c/ 
        - name: config-yml-volume 
          mountPath: /usr/share/logstash/config/ 
        - name: timezone 
          mountPath: /etc/localtime 
        resources: # logstash 一定要加上资源限制,避免对其他业务造成资源抢占影响 
          limits: 
            cpu: 1000m 
            memory: 2048Mi 
          requests: 
            cpu: 512m 
            memory: 512Mi 
      volumes: 
      - name: config-volume 
        configMap: 
          name: logstash-conf 
          items: 
          - key: logstash.conf 
            path: logstash.conf 
      - name: timezone 
        hostPath: 
          path: /etc/localtime 
      - name: config-yml-volume 
        configMap: 
          name: logstash-yml 
          items: 
          - key: logstash.yml 
            path: logstash.yml 
 
--- 
apiVersion: v1 
kind: ConfigMap 
metadata: 
  name: logstash-conf 
  namespace: kube-logging 
  labels: 
    type: logstash 
data: 
  logstash.conf: |- 
    input {
      beats { 
        port => 5044 
      } 
    } 
    filter {
      # 处理 ingress 日志 
      if [kubernetes][container][name] == "nginx-ingress-controller" {
        json {
          source => "message" 
          target => "ingress_log" 
        }
        if [ingress_log][requesttime] { 
          mutate { 
            convert => ["[ingress_log][requesttime]", "float"] 
          }
        }
        if [ingress_log][upstremtime] { 
          mutate { 
            convert => ["[ingress_log][upstremtime]", "float"] 
          }
        } 
        if [ingress_log][status] { 
          mutate { 
            convert => ["[ingress_log][status]", "float"] 
          }
        }
        if  [ingress_log][httphost] and [ingress_log][uri] {
          mutate { 
            add_field => {"[ingress_log][entry]" => "%{[ingress_log][httphost]}%{[ingress_log][uri]}"} 
          } 
          mutate { 
            split => ["[ingress_log][entry]","/"] 
          } 
          if [ingress_log][entry][1] { 
            mutate { 
              add_field => {"[ingress_log][entrypoint]" => "%{[ingress_log][entry][0]}/%{[ingress_log][entry][1]}"} 
              remove_field => "[ingress_log][entry]" 
            }
          } else { 
            mutate { 
              add_field => {"[ingress_log][entrypoint]" => "%{[ingress_log][entry][0]}/"} 
              remove_field => "[ingress_log][entry]" 
            }
          }
        }
      }
      # 处理以srv进行开头的业务服务日志 
      if [kubernetes][container][name] =~ /^srv*/ { 
        json { 
          source => "message" 
          target => "tmp" 
        } 
        if [kubernetes][namespace] == "kube-logging" { 
          drop{} 
        } 
        if [tmp][level] { 
          mutate{ 
            add_field => {"[applog][level]" => "%{[tmp][level]}"} 
          } 
          if [applog][level] == "debug"{ 
            drop{} 
          } 
        } 
        if [tmp][msg] { 
          mutate { 
            add_field => {"[applog][msg]" => "%{[tmp][msg]}"} 
          } 
        } 
        if [tmp][func] { 
          mutate { 
            add_field => {"[applog][func]" => "%{[tmp][func]}"} 
          } 
        } 
        if [tmp][cost]{ 
          if "ms" in [tmp][cost] { 
            mutate { 
              split => ["[tmp][cost]","m"] 
              add_field => {"[applog][cost]" => "%{[tmp][cost][0]}"} 
              convert => ["[applog][cost]", "float"] 
            } 
          } else { 
            mutate { 
              add_field => {"[applog][cost]" => "%{[tmp][cost]}"} 
            }
          }
        }
        if [tmp][method] { 
          mutate { 
            add_field => {"[applog][method]" => "%{[tmp][method]}"} 
          }
        }
        if [tmp][request_url] { 
          mutate { 
            add_field => {"[applog][request_url]" => "%{[tmp][request_url]}"} 
          } 
        }
        if [tmp][meta._id] { 
          mutate { 
            add_field => {"[applog][traceId]" => "%{[tmp][meta._id]}"} 
          } 
        } 
        if [tmp][project] { 
          mutate { 
            add_field => {"[applog][project]" => "%{[tmp][project]}"} 
          }
        }
        if [tmp][time] { 
          mutate { 
            add_field => {"[applog][time]" => "%{[tmp][time]}"} 
          }
        }
        if [tmp][status] { 
          mutate { 
            add_field => {"[applog][status]" => "%{[tmp][status]}"} 
            convert => ["[applog][status]", "float"] 
          }
        }
      }
      mutate { 
        rename => ["kubernetes", "k8s"] 
        remove_field => "beat" 
        remove_field => "tmp" 
        remove_field => "[k8s][labels][app]" 
      }
    }
    output { 
      elasticsearch { 
        hosts => ["http://elasticsearch-logging:9200"] 
        codec => json 
        index => "logstash-%{+YYYY.MM.dd}" # 索引名称以 logstash+ 日志进行每日新建 
      } 
    } 
---
 
apiVersion: v1 
kind: ConfigMap 
metadata: 
  name: logstash-yml 
  namespace: kube-logging 
  labels: 
    type: logstash 
data: 
  logstash.yml: |- 
    http.host: "0.0.0.0" 
    xpack.monitoring.elasticsearch.hosts: http://elasticsearch-logging:9200
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
kubectl create -f logstash.yaml
1

# 部署 filebeat 数据采集

创建 filebeat.yaml 并部署

--- 
apiVersion: v1 
kind: ConfigMap 
metadata: 
  name: filebeat-config 
  namespace: kube-logging 
  labels: 
    k8s-app: filebeat 
data: 
  filebeat.yml: |- 
    filebeat.inputs: 
    - type: container 
      enable: true
      paths: 
        - /var/log/containers/*.log # 这里是 filebeat 采集挂载到 pod 中的日志目录 
      processors: 
        - add_kubernetes_metadata: # 添加 k8s 的字段用于后续的数据清洗 
            host: ${NODE_NAME}
            matchers: 
            - logs_path: 
                logs_path: "/var/log/containers/" 
    # output.kafka:  # 如果日志量较大,es 中的日志有延迟,可以选择在 filebeat 和 logstash 中间加入 kafka 
    #  hosts: ["kafka-log-01:9092", "kafka-log-02:9092", "kafka-log-03:9092"] 
    # topic: 'topic-test-log' 
    #  version: 2.0.0 
    output.logstash: # 因为还需要部署 logstash 进行数据的清洗,因此 filebeat 是把数据推到 logstash 中 
       hosts: ["logstash:5044"] 
       enabled: true 
--- 
apiVersion: v1 
kind: ServiceAccount 
metadata: 
  name: filebeat 
  namespace: kube-logging 
  labels: 
    k8s-app: filebeat
--- 
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole 
metadata: 
  name: filebeat 
  labels: 
    k8s-app: filebeat 
rules: 
- apiGroups: [""] # "" indicates the core API group 
  resources: 
  - namespaces 
  - pods 
  verbs: ["get", "watch", "list"] 
--- 
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding 
metadata: 
  name: filebeat 
subjects: 
- kind: ServiceAccount 
  name: filebeat 
  namespace: kube-logging 
roleRef: 
  kind: ClusterRole 
  name: filebeat 
  apiGroup: rbac.authorization.k8s.io 
--- 
apiVersion: apps/v1 
kind: DaemonSet 
metadata: 
  name: filebeat 
  namespace: kube-logging 
  labels: 
    k8s-app: filebeat 
spec: 
  selector: 
    matchLabels: 
      k8s-app: filebeat 
  template: 
    metadata: 
      labels: 
        k8s-app: filebeat 
    spec: 
      serviceAccountName: filebeat 
      terminationGracePeriodSeconds: 30 
      containers: 
      - name: filebeat 
        image: docker.io/kubeimages/filebeat:7.9.3 # 该镜像支持 arm64 和 amd64 两种架构 
        args: [ 
          "-c", "/etc/filebeat.yml", 
          "-e","-httpprof","0.0.0.0:6060" 
        ] 
        #ports: 
        #  - containerPort: 6060 
        #    hostPort: 6068 
        env: 
        - name: NODE_NAME 
          valueFrom: 
            fieldRef: 
              fieldPath: spec.nodeName 
        - name: ELASTICSEARCH_HOST 
          value: elasticsearch-logging 
        - name: ELASTICSEARCH_PORT 
          value: "9200" 
        securityContext: 
          runAsUser: 0 
          # If using Red Hat OpenShift uncomment this: 
          #privileged: true 
        resources: 
          limits: 
            memory: 1000Mi 
            cpu: 1000m 
          requests: 
            memory: 100Mi 
            cpu: 100m 
        volumeMounts: 
        - name: config # 挂载的是 filebeat 的配置文件 
          mountPath: /etc/filebeat.yml 
          readOnly: true 
          subPath: filebeat.yml 
        - name: data # 持久化 filebeat 数据到宿主机上 
          mountPath: /usr/share/filebeat/data 
        - name: varlibdockercontainers # 这里主要是把宿主机上的源日志目录挂载到filebeat容器中,如果没有修改 docker 或者 containerd 的 runtime 进行了标准的日志落盘路径,可以把 mountPath 改为 /var/lib 
          mountPath: /var/lib
          readOnly: true 
        - name: varlog # 这里主要是把宿主机上 /var/log/pods和/var/log/containers 的软链接挂载到 filebeat 容器中 
          mountPath: /var/log/ 
          readOnly: true 
        - name: timezone 
          mountPath: /etc/localtime 
      volumes: 
      - name: config 
        configMap: 
          defaultMode: 0600 
          name: filebeat-config 
      - name: varlibdockercontainers 
        hostPath: # 如果没有修改docker或者containerd的runtime进行了标准的日志落盘路径,可以把path改为/var/lib 
          path: /var/lib
      - name: varlog 
        hostPath: 
          path: /var/log/ 
      # data folder stores a registry of read status for all files, so we don't send everything again on a Filebeat pod restart 
      - name: inputs 
        configMap: 
          defaultMode: 0600 
          name: filebeat-inputs 
      - name: data 
        hostPath: 
          path: /data/filebeat-data 
          type: DirectoryOrCreate 
      - name: timezone 
        hostPath: 
          path: /etc/localtime 
      tolerations: #加入容忍能够调度到每一个节点 
      - effect: NoExecute 
        key: dedicated 
        operator: Equal 
        value: gpu 
      - effect: NoSchedule 
        operator: Exists
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
kubectl create -f filebeat.yaml
1

# 部署 kibana 可视化界面

此处有配置 kibana 访问域名,如果没有域名则需要在本机配置 hosts

192.168.199.28 kibana.youngkbt.cn
1

创建 kibana.yaml 并创建服务

---
apiVersion: v1
kind: ConfigMap
metadata:
  namespace: kube-logging
  name: kibana-config
  labels:
    k8s-app: kibana
data:
  kibana.yml: |-
    server.name: kibana
    server.host: "0"
    i18n.locale: zh-CN                      # 设置默认语言为中文
    elasticsearch:
      hosts: ${ELASTICSEARCH_HOSTS}         # es 集群连接地址,由于我这都都是 k8s 部署且在一个 ns 下,可以直接使用 service name 连接
--- 
apiVersion: v1 
kind: Service 
metadata: 
  name: kibana 
  namespace: kube-logging 
  labels: 
    k8s-app: kibana 
    kubernetes.io/cluster-service: "true" 
    addonmanager.kubernetes.io/mode: Reconcile 
    kubernetes.io/name: "Kibana" 
    srv: srv-kibana 
spec: 
  type: NodePort
  ports: 
  - port: 5601 
    protocol: TCP 
    targetPort: ui 
  selector: 
    k8s-app: kibana 
--- 
apiVersion: apps/v1 
kind: Deployment 
metadata: 
  name: kibana 
  namespace: kube-logging 
  labels: 
    k8s-app: kibana 
    kubernetes.io/cluster-service: "true" 
    addonmanager.kubernetes.io/mode: Reconcile 
    srv: srv-kibana 
spec: 
  replicas: 1 
  selector: 
    matchLabels: 
      k8s-app: kibana 
  template: 
    metadata: 
      labels: 
        k8s-app: kibana 
    spec: 
      containers: 
      - name: kibana 
        image: docker.io/kubeimages/kibana:7.9.3 # 该镜像支持 arm64 和 amd64 两种架构 
        resources: 
          # need more cpu upon initialization, therefore burstable class 
          limits: 
            cpu: 1000m 
          requests: 
            cpu: 100m 
        env: 
          - name: ELASTICSEARCH_HOSTS 
            value: http://elasticsearch-logging:9200 
        ports: 
        - containerPort: 5601 
          name: ui 
          protocol: TCP 
        volumeMounts:
        - name: config
          mountPath: /usr/share/kibana/config/kibana.yml
          readOnly: true
          subPath: kibana.yml
      volumes:
      - name: config
        configMap:
          name: kibana-config
--- 
apiVersion: networking.k8s.io/v1
kind: Ingress 
metadata: 
  name: kibana 
  namespace: kube-logging 
spec: 
  ingressClassName: nginx
  rules: 
  - host: kibana.youngkbt.cn
    http: 
      paths: 
      - path: / 
        pathType: Prefix
        backend: 
          service:
            name: kibana 
            port:
              number: 5601
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
kubectl create -f kibana.yaml
1

# Kibana 配置

进入 Kibana 界面,打开菜单中的 Stack Management 可以看到采集到的日志。

避免日志越来越大,占用磁盘过多,进入 索引生命周期策略 界面点击 创建策略 按钮。

  • 设置策略名称为 logstash-history-ilm-policy
  • 关闭热阶段
  • 开启删除阶段,设置保留天数为 7 天

保存配置

为了方便在 discover 中查看日志,选择 索引模式 然后点击 创建索引模式 按钮。

  • 索引模式名称 里面配置 logstash-*

  • 点击下一步

  • 时间字段 选择 @timestamp

  • 点击 创建索引模式 按钮

由于部署的单节点,产生副本后索引状态会变成 yellow,打开 dev tools,取消所有索引的副本数

PUT _all/_settings
{
    "number_of_replicas": 0
}
1
2
3
4

为了标准化日志中的 map 类型,以及解决链接索引生命周期策略,我们需要修改默认模板

PUT _template/logstash 
{ 
    "order": 1, 
    "index_patterns": [ 
      "logstash-*" 
    ], 
    "settings": { 
      "index": { 
      "lifecycle" : { 
          "name" : "logstash-history-ilm-policy" 
        }, 
        "number_of_shards": "2", 
        "refresh_interval": "5s", 
        "number_of_replicas" : "0" 
      } 
    }, 
    "mappings": { 
        "properties": { 
          "@timestamp": { 
            "type": "date" 
          }, 
          "applog": { 
            "dynamic": true, 
            "properties": { 
              "cost": { 
                "type": "float" 
              }, 
              "func": { 
                "type": "keyword" 
              }, 
              "method": { 
                "type": "keyword" 
              } 
            } 
          }, 
          "k8s": { 
            "dynamic": true, 
            "properties": { 
              "namespace": { 
                "type": "keyword" 
              }, 
              "container": { 
                "dynamic": true, 
                "properties": { 
                  "name": { 
                    "type": "keyword" 
                  } 
                } 
              }, 
              "labels": { 
                "dynamic": true, 
                "properties": { 
                  "srv": { 
                    "type": "keyword" 
                  } 
                } 
              } 
            } 
          }, 
          "geoip": { 
            "dynamic": true, 
            "properties": { 
              "ip": { 
                "type": "ip" 
              }, 
              "latitude": { 
                "type": "float" 
              }, 
              "location": { 
                "type": "geo_point" 
              }, 
              "longitude": { 
                "type": "float" 
              } 
            } 
          } 
      } 
    }, 
    "aliases": {} 
  } 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

最后即可通过 discover 进行搜索了。

更新时间: 2024/01/17, 05:48:13
最近更新
01
JVM调优
12-10
02
jenkins
12-10
03
Arthas
12-10
更多文章>